Nouveaux membres de l’académie : art et mathématiques réunis !

Transparenz: Redaktionell erstellt und geprüft.
Veröffentlicht am

L'Université de Münster accueille de nouveaux membres à l'Académie des sciences : les professeurs Frohne et Viehmann.

Die Universität Münster begrüßt neue Mitglieder in der Akademie der Wissenschaften: Prof. Frohne und Prof. Viehmann.
L'Université de Münster accueille de nouveaux membres à l'Académie des sciences : les professeurs Frohne et Viehmann.

Nouveaux membres de l’académie : art et mathématiques réunis !

L'Académie des sciences et des arts de Rhénanie du Nord-Westphalie (AWK) a accueilli douze nouveaux membres le 16 mai 2025 dans le cadre de sa célébration annuelle. Parmi elles se trouvent deux femmes scientifiques exceptionnelles : la professeure Dr. Ursula Frohne et la professeure Dr. Eva Viehmann. L'académie, qui existe depuis 1970 et intègre également les arts depuis 2008, se caractérise par le fait qu'elle n'accepte que d'excellents chercheurs et artistes. Elle compte actuellement environ 280 membres titulaires et 130 membres correspondants issus d'un large éventail de domaines spécialisés.

Le professeur Ursula Frohne, historienne de l'art à l'Université de Münster, est nommée depuis 2015 pour son expertise en histoire de l'art, en particulier l'art moderne et contemporain. Ses recherches portent sur les pratiques artistiques contemporaines, notamment la photographie, le cinéma et l'art numérique, ainsi que sur les dimensions politiques de la culture visuelle. Avant d'accéder à la chaire, elle était conservatrice en chef au Musée d'art contemporain de Karlsruhe et chargée de cours à l'Université d'État de design. Frohne est également co-président d'un groupe de recherche collégial qui traite de l'accès aux biens culturels dans le cadre du changement numérique.

Recherche dans le domaine des mathématiques

Prof. Dr. En tant que mathématicienne, Eva Viehmann apporte d'importantes contributions à la géométrie arithmétique. Elle s'intéresse aux liens entre la théorie des nombres et la théorie des représentations, notamment dans le cadre du programme Langlands. Viehmann a trouvé des preuves de connexions précédemment suspectées et a introduit une nouvelle classe d'espaces modulaires. Elle a reçu le prix Gottfried Wilhelm Leibniz en 2024 pour ses réalisations exceptionnelles.

Le programme Langlands, initialement proposé par Robert Langlands à la fin des années 1960, est un ensemble de conjectures qui explorent les liens profonds entre la théorie des nombres et la géométrie. Le but de ces théories est d'établir des relations entre les groupes de Galois dans la théorie algébrique des nombres et les formes automorphes et la théorie des représentations des groupes algébriques. Edward Frenkel décrit le programme de Langlands comme la « grande théorie unifiée des mathématiques ». Depuis sa formulation, le programme a évolué et s'applique à de nombreux groupes et domaines.

Les résultats spécifiques résultant de ce programme incluent la preuve de Wiles de la modularité des courbes elliptiques semistables ainsi que la preuve de Lafforgue de la correspondance globale de Langlands pour le groupe linéaire général en 1998. Ces avancées sont souvent basées sur des méthodes techniques complexes et des connaissances théoriques approfondies.

Dans l'ensemble, l'admission du professeur Frohne et du professeur Viehmann à l'Académie reflète la grande appréciation des contributions de diverses disciplines scientifiques et montre l'engagement de l'AWK à promouvoir des réalisations exceptionnelles dans la recherche et l'art. Leurs futurs travaux sont très attendus, notamment au vu des développements en cours dans le domaine du programme de Langlands, qui continue d’être considéré comme l’un des défis centraux des mathématiques modernes.

Pour plus de détails sur le programme Langlands, vous pouvez Wikipédia visite. Vous pouvez en savoir plus sur l'académie sur Site Internet de l'Université de Münster.